THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics

MATH 2055 Tutorial 5 (Oct 21)

1. True or False.

(a) $\{x_n\}$ converges \iff all subsequence $\{x_{n_k}\}$ of $\{x_n\}$ has a convergent subsequence $\{x_{n_{k_l}}\}$

Solution: False

 $x_n = (-1)^n$ is counter example

all subsequence of $\{x_n\}$ is bounded sequence, and hence the subsequence has a convergent subsequence by Bolzano Weierstrass Theorem

but $\{x_n\}$ is divergent

(b) If $\lim_{n \to \infty} |x_{n+1} - x_n| = 0$, then $\{x_n\}$ converges.

Solution: False

 $x_n = \sum_{i=1}^n \frac{1}{i}$ is counter example

 $\{x_n\}$ is increasing

$$\begin{aligned} x_{2^m} &= \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{2^m} \\ &= (\frac{1}{1}) + (\frac{1}{2}) + (\frac{1}{3} + \frac{1}{4}) + (\frac{1}{5} + \dots + \frac{1}{8}) + \dots (\frac{1}{2^r + 1} + \dots + \frac{1}{2^{r+1}}) + \dots \\ &+ (\frac{1}{2^{m-1} + 1} + \dots + \frac{1}{2^m}) \\ &\geq \frac{1}{2} + \frac{1}{2} + \dots + \frac{1}{2} \\ &= \frac{m+1}{2} \end{aligned}$$

hence $\{x_n\}$ is unbounded and divergent

(c) If $f(\frac{1}{2^n})$ converge to f(0), then f is continuous at 0

Solution: False

by definition, we should check all sequence which tends to 0 , not just a particular sequence

$$f(x) = \begin{cases} 0 & \text{if } x = \frac{1}{3^n} \text{ for some natural number n} \\ 1 & \text{otherwise} \end{cases}$$

is a counter example

it don't have right continuity

- 2. Prove that the following function is continuous
 - (a) $f(x) = r^x$ where r is positive real number

Solution: $\forall x \in \mathbb{R},$ case 1, $r \ge 1$ Recall that $\lim_{m \to \infty} r^{\frac{1}{m}} = 1$ (homework 2) $\forall \epsilon > 0, \exists M_1 \text{ such that for all } m > M_1, |r^{\frac{1}{m}} - 1| < \frac{\epsilon}{|r^x|}$ similarly, $\lim_{m \to \infty} r^{\frac{-1}{m}} = 1$ $\exists M_2 \text{ such that for all } m > M_2, |r^{\frac{-1}{m}} - 1| < \frac{\epsilon}{|r^x|}$ for all sequence $\{x_n\}$ which tends to x, $\exists N, \text{ such that } \frac{-1}{\max\{M_1, M_2\}+1} < x_n - x < \frac{1}{\max\{M_1, M_2\}+1}$ because $r \ge 1$, $r^{\frac{-1}{\max\{M_1, M_2\}+1}} \le r^{-|x_n - x|} \le r^{x_n - x} \le r^{|x_n - x|} \le r^{\frac{1}{\max\{M_1, M_2\}+1}}$ $\Longrightarrow 1 - \frac{\epsilon}{|r^x|} < r^{x_n - x} < 1 + \frac{\epsilon}{|r^x|}$ $|r^{x_n} - r^x| = |r^x||r^{x_n - x} - 1| < \epsilon$ \therefore { r^{x_n} } tends to r^x , and hence f is continuous

case 2, for $r \leq 1$ we do similar things

(b) $f(x) = max\{g(x), h(x)\}\$ where g, h are continuous function

Solution: take $x \in \mathbb{R}$, Case 1, $h(x) \neq g(x)$, WLOG, we can assume $h(x) \geq g(x)$ $\forall \epsilon \text{ such that } \frac{h(x) - g(x)}{2} > \epsilon > 0$ because h is continuous, $\exists \delta_1$ such that $\forall y_1 \in (x - \delta_1, x + \delta_1), |h(y_1) - h(x)| < \epsilon$ because g is continuous, $\exists \delta_2$ such that $\forall y_2 \in (x - \delta_2, x + \delta_2), |g(y_2) - g(x)| < \epsilon$ let $\delta = max\{\delta_1, \delta_2\},\$ $\forall y \in (x - \delta, x + \delta),$ $h(y) > h(x) - \frac{h(x) - g(x)}{2} = g(x) + \frac{h(x) - g(x)}{2} > g(y)$ $\therefore f(y) = h(y)$ $\implies |f(x) - f(y)| < \epsilon$ \implies f is continuous at x case 2, h(x) = g(x), $\forall \epsilon > 0$ because h is continuous, $\exists \delta_1$ such that $\forall y_1 \in (x - \delta_1, x + \delta_1), |h(y_1) - h(x)| < \epsilon$ because g is continuous, $\exists \delta_2$ such that $\forall y_2 \in (x - \delta_2, x + \delta_2), |g(y_2) - g(x)| < \epsilon$

let $\delta = max\{\delta_1, \delta_2\},\$

 $\forall y \in (x - \delta, x + \delta),$

$$\begin{split} |f(x) - f(y)| &\leq \max\{|f(x) - h(y)|, |f(x) - g(y)|\} \\ &= \max\{|h(x) - h(y)|, |g(x) - g(y)|\} \\ &< \epsilon \end{split}$$

 \therefore f is continuous at x

(c)
$$f(x) = \begin{cases} 0 & \text{if } x = 0\\ x \sin \frac{1}{x} & \text{if } x \neq 0 \end{cases}$$

Soliution:

only need to prove the continuity at 0

$$\forall \epsilon > 0 , \forall x \in (-\epsilon, \epsilon),$$

if $x \neq 0$,
$$|f(x) - f(0)| = |x \sin \frac{1}{x}| \le |x| < \epsilon$$

if $x = 0$
$$|f(x) - f(0)| = 0 < \epsilon$$

 \therefore f is continuous at 0

3. given a sequence $\{x_n\}$, let $A = \{x | \exists$ subsequence $\{x_{n_k}\}$ of $\{x_n\}$ such that $\{x_{n_k}\}$ tends to x $\}$

Can A has uncountable infinitely many elements?

Solution:

set of all rational number $\mathbb Q$ are countable and hence you can list all rational number as a sequence

for any real number **r** , we can find a subsequence of the sequence above which tends to **r**

consider digital representation

4. Prove that all bounded sequence $\{x_n\}$ has a monotone subsequence.

Solution:

Fist, we define peak index

m is a peak index for sequence $\{a_n\} \iff a_n \le a_m \forall n \ge m$

Case 1, if there are infinitely many peak index

we can take $n_k = k$ -th peak index

by definition, $a_k \ge a_{k+1}$ as k is peak index

 $\therefore \{a_{n_k}\}$ is decreasing sequence

case 2, there are only finite peak index

 $\exists N$, such that there are no peak index greater than N

take $n_1 = N + 1$,

 n_1 is not peak index ,

 $\therefore \exists n_2 > n_1$ such that $a_{n_2} > a_{n_1}$, also n_2 is not peak index

recursively, we can take a increasing subsequence $\{a_{n_i}\}$

5. Given sequence of bounded sequence $\{a_{1,n}\}, \{a_{2,n}\}, \{a_{3,n}\}, \{a_{4,n}\}, \dots$ prove that there is a subsequence of natural number , say $\{n_k\}$, such that $\{a_{i,n_k}\}$ converge for all i

Solution:

idea: Subsequence of convergent sequence are convergent. we can try to apply Bolzano Weierstrass theorem iteratively such that the final subsequence "nearly" inside a convergent subsequence of each $\{a_{i,n}\}$

 \therefore { $a_{1,m}$ } is bounded, \exists subsequence { $m_{1,k}$ } of {m} such that { $a_{1,m_{1,k}}$ } converges

take $n_1 = m_{1,1}$

 $\{a_{2,m_{1,k}}\}$ is bounded, \exists subsequence $\{m_{2,k}\}$ of $\{m_{1,k}\}$ such that $\{a_{2,m_{2,k}}\}$ converges

WLOG, we can assume $m_{2,1} > m_{1,1}$

take $n_2 = m_{2,1}$

Inductively, we can find a sequence n_k , such that a_{i,n_k} is a subsequence of $a_{i,m_{i,k}}$

 $\implies \{a_{i,n_k}\}$ converges for all i