THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics

MATH 2055 Tutorial 5 (Oct 21)

Ng Wing Kit

1. True or False.
(a) $\left\{x_{n}\right\}$ converges \Longleftrightarrow all subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$ has a convergent subsequence $\left\{x_{n_{k_{l}}}\right\}$

Solution: False
$x_{n}=(-1)^{n}$ is counter example
all subsequence of $\left\{x_{n}\right\}$ is bounded sequence, and hence the subsequence has a convergent subsequence by Bolzano Weierstrass Theorem
but $\left\{x_{n}\right\}$ is divergent
(b) If $\lim _{n \rightarrow \infty}\left|x_{n+1}-x_{n}\right|=0$, then $\left\{x_{n}\right\}$ converges.

Solution: False
$x_{n}=\sum_{i=1}^{n} \frac{1}{i}$ is counter example
$\left\{x_{n}\right\}$ is increasing

$$
\begin{aligned}
x_{2^{m}} & =\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots+\frac{1}{2^{m}} \\
& =\left(\frac{1}{1}\right)+\left(\frac{1}{2}\right)+\left(\frac{1}{3}+\frac{1}{4}\right)+\left(\frac{1}{5}+\cdots+\frac{1}{8}\right)+\cdots\left(\frac{1}{2^{r}+1}+\cdots \frac{1}{2^{r+1}}\right)+\cdots \\
& +\left(\frac{1}{2^{m-1}+1}+\cdots+\frac{1}{2^{m}}\right) \\
& \geq \frac{1}{2}+\frac{1}{2}+\cdots+\frac{1}{2} \\
& =\frac{m+1}{2}
\end{aligned}
$$

hence $\left\{x_{n}\right\}$ is unbounded and divergent
(c) If $f\left(\frac{1}{2^{n}}\right)$ converge to $f(0)$, then f is continuous at 0

Solution: False
by definition, we should check all sequence which tends to 0 , not just a particular sequence
$f(x)= \begin{cases}0 & \text { if } x=\frac{1}{3^{n}} \text { for some natural number } \mathrm{n} \\ 1 & \text { otherwise }\end{cases}$
is a counter example
it don't have right continuity
2. Prove that the following function is continuous
(a) $f(x)=r^{x}$ where r is positive real number

Solution:
$\forall x \in \mathbb{R}$,
case $1, r \geq 1$
Recall that $\lim _{m \rightarrow \infty} r^{\frac{1}{m}}=1$ (homework 2)
$\forall \epsilon>0, \exists M_{1}$ such that for all $m>M_{1},\left|r^{\frac{1}{m}}-1\right|<\frac{\epsilon}{\left|r^{x}\right|}$
similarly, $\lim _{m \rightarrow \infty} r^{\frac{-1}{m}}=1$
$\exists M_{2}$ such that for all $m>M_{2},\left|r^{\frac{-1}{m}}-1\right|<\frac{\epsilon}{\left|r^{x}\right|}$
for all sequence $\left\{x_{n}\right\}$ which tends to x ,
$\exists N$, such that $\frac{-1}{\max \left\{M_{1}, M_{2}\right\}+1}<x_{n}-x<\frac{1}{\max \left\{M_{1}, M_{2}\right\}+1}$
because $r \geq 1, r^{\frac{-1}{\max \left\{M_{1}, M_{2}\right\}+1}} \leq r^{-\left|x_{n}-x\right|} \leq r^{x_{n}-x} \leq r^{\left|x_{n}-x\right|} \leq r^{\frac{1}{\max \left\{M_{1}, M_{2}\right\}+1}}$
$\Longrightarrow 1-\frac{\epsilon}{\left|r^{x}\right|}<r^{x_{n}-x}<1+\frac{\epsilon}{\left|r^{x}\right|}$
$\left|r^{x_{n}}-r^{x}\right|=\left|r^{x}\right|\left|r^{x_{n}-x}-1\right|<\epsilon$
$\therefore\left\{r^{x_{n}}\right\}$ tends to r^{x}, and hence f is continuous
case 2 , for $r \leq 1$ we do similar things
(b) $f(x)=\max \{g(x), h(x)\}$
where g, h are continuous function

Solution: take $x \in \mathbb{R}$,
Case $1, h(x) \neq g(x)$, WLOG, we can assume $h(x) \geq g(x)$
$\forall \epsilon$ such that $\frac{h(x)-g(x)}{2}>\epsilon>0$
because h is continuous, $\exists \delta_{1}$ such that $\forall y_{1} \in\left(x-\delta_{1}, x+\delta_{1}\right),\left|h\left(y_{1}\right)-h(x)\right|<\epsilon$ because g is continuous, $\exists \delta_{2}$ such that $\forall y_{2} \in\left(x-\delta_{2}, x+\delta_{2}\right),\left|g\left(y_{2}\right)-g(x)\right|<\epsilon$ let $\delta=\max \left\{\delta_{1}, \delta_{2}\right\}$,
$\forall y \in(x-\delta, x+\delta)$,
$h(y)>h(x)-\frac{h(x)-g(x)}{2}=g(x)+\frac{h(x)-g(x)}{2}>g(y)$
$\therefore f(y)=h(y)$
$\Longrightarrow|f(x)-f(y)|<\epsilon$
$\Longrightarrow f$ is continuous at x
case $2, \mathrm{~h}(\mathrm{x})=\mathrm{g}(\mathrm{x})$,
$\forall \epsilon>0$
because h is continuous, $\exists \delta_{1}$ such that $\forall y_{1} \in\left(x-\delta_{1}, x+\delta_{1}\right),\left|h\left(y_{1}\right)-h(x)\right|<\epsilon$ because g is continuous, $\exists \delta_{2}$ such that $\forall y_{2} \in\left(x-\delta_{2}, x+\delta_{2}\right),\left|g\left(y_{2}\right)-g(x)\right|<\epsilon$ let $\delta=\max \left\{\delta_{1}, \delta_{2}\right\}$,
$\forall y \in(x-\delta, x+\delta)$,

$$
\begin{aligned}
|f(x)-f(y)| & \leq \max \{|f(x)-h(y)|,|f(x)-g(y)|\} \\
& =\max \{|h(x)-h(y)|,|g(x)-g(y)|\} \\
& <\epsilon
\end{aligned}
$$

$\therefore \mathrm{f}$ is continuous at x
(c) $f(x)= \begin{cases}0 & \text { if } x=0 \\ x \sin \frac{1}{x} & \text { if } x \neq 0\end{cases}$

Soliution:
only need to prove the continuity at 0
$\forall \epsilon>0, \forall x \in(-\epsilon, \epsilon)$,
if $x \neq 0$,
$|f(x)-f(0)|=\left|x \sin \frac{1}{x}\right| \leq|x|<\epsilon$
if $x=0$
$|f(x)-f(0)|=0<\epsilon$
$\therefore \mathrm{f}$ is continuous at 0
3. given a sequence $\left\{x_{n}\right\}$, let $A=\left\{x \mid \exists\right.$ subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$ such that $\left\{x_{n_{k}}\right\}$ tends to x$\}$
Can A has uncountable infinitely many elements?

Solution:
set of all rational number \mathbb{Q} are countable and hence you can list all rational number as a sequence
for any real number r , we can find a subsequence of the sequence above which tends to r
consider digital representation
4. Prove that all bounded sequence $\left\{x_{n}\right\}$ has a monotone subsequence.

Solution:

Fist, we define peak index
m is a peak index for sequence $\left\{a_{n}\right\} \Longleftrightarrow a_{n} \leq a_{m} \forall n \geq m$
Case 1, if there are infinitely many peak index
we can take $n_{k}=\mathrm{k}$-th peak index
by definition, $a_{k} \geq a_{k+1}$ as k is peak index
$\therefore\left\{a_{n_{k}}\right\}$ is decreasing sequence
case 2 , there are only finite peak index
$\exists N$, such that there are no peak index greater than N
take $n_{1}=N+1$,
n_{1} is not peak index,
$\therefore \exists n_{2}>n_{1}$ such that $a_{n_{2}}>a_{n_{1}}$, also n_{2} is not peak index
recursively, we can take a increasing subsequence $\left\{a_{n_{i}}\right\}$
5. Given sequence of bounded sequence $\left\{a_{1, n}\right\},\left\{a_{2, n}\right\},\left\{a_{3, n}\right\},\left\{a_{4, n}\right\}, \ldots$ prove that there is a subsequence of natural number, say $\left\{n_{k}\right\}$, such that $\left\{a_{i, n_{k}}\right\}$ converge for all i

Solution:
idea: Subsequence of convergent sequence are convergent. we can try to apply Bolzano Weierstrass theorem iteratively such that the final subsequence "nearly" inside a convergent subsequence of each $\left\{a_{i, n}\right\}$
$\because\left\{a_{1, m}\right\}$ is bounded, \exists subsequence $\left\{m_{1, k}\right\}$ of $\{m\}$ such that $\left\{a_{1, m_{1, k}}\right\}$ converges
take $n_{1}=m_{1,1}$
$\left\{a_{2, m_{1, k}}\right\}$ is bounded, \exists subsequence $\left\{m_{2, k}\right\}$ of $\left\{m_{1, k}\right\}$ such that $\left\{a_{2, m_{2, k}}\right\}$ converges WLOG, we can assume $m_{2,1}>m_{1,1}$
take $n_{2}=m_{2,1}$
Inductively, we can find a sequence n_{k}, such that $a_{i, n_{k}}$ is a subsequence of $a_{i, m_{i, k}}$ $\Longrightarrow\left\{a_{i, n_{k}}\right\}$ converges for all i

